Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294241

RESUMO

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Interleucina-33/genética , Citocinas , Imunomodulação , Imunidade
2.
Nature ; 625(7995): 578-584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123677

RESUMO

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Assuntos
Eritrócitos , Malária Falciparum , Complexos Multiproteicos , Parasitos , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Microscopia Crioeletrônica , Dissulfetos/química , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Merozoítos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Parasitos/metabolismo , Parasitos/patogenicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
3.
Elife ; 122023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796723

RESUMO

Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/fisiologia , Basigina , Eritrócitos/parasitologia , Anticorpos Neutralizantes , Malária Falciparum/parasitologia , Proteínas de Protozoários/metabolismo , Ligação Proteica , Antígenos de Protozoários
4.
Trends Parasitol ; 39(12): 1014-1022, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758633

RESUMO

African trypanosomes show a remarkable ability to survive as extracellular parasites in the blood and tissue spaces of an infected mammal. Throughout the infection they are exposed to the molecules and cells of the immune system, including complement. In this opinion piece, we review decades-worth of evidence about how complement affects African trypanosomes. We highlight the discovery of a trypanosome receptor for complement C3 and we critically assess three recent studies which attempt to provide a structural and mechanistic view of how this receptor helps trypanosomes to survive in the presence of complement.


Assuntos
Trypanosoma , Tripanossomíase Africana , Animais , Tripanossomíase Africana/parasitologia , Mamíferos
5.
Nat Commun ; 14(1): 3637, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336887

RESUMO

The symptoms of malaria occur during the blood stage of infection, when the parasite replicates within human red blood cells. The human malaria parasite, Plasmodium vivax, selectively invades reticulocytes in a process which requires an interaction between the ectodomain of the human DARC receptor and the Plasmodium vivax Duffy-binding protein, PvDBP. Previous studies have revealed that a small helical peptide from DARC binds to region II of PvDBP (PvDBP-RII). However, it is also known that sulphation of tyrosine residues on DARC affects its binding to PvDBP and these residues were not observed in previous structures. We therefore present the structure of PvDBP-RII bound to sulphated DARC peptide, showing that a sulphate on tyrosine 41 binds to a charged pocket on PvDBP-RII. We use molecular dynamics simulations, affinity measurements and growth-inhibition experiments in parasites to confirm the importance of this interaction. We also reveal the epitope for vaccine-elicited growth-inhibitory antibody DB1. This provides a complete understanding of the binding of PvDBP-RII to DARC and will guide the design of vaccines and therapeutics to target this essential interaction.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Malária Vivax , Plasmodium vivax , Humanos , Antígenos de Protozoários , Eritrócitos/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Reticulócitos/metabolismo , Tirosina/metabolismo
6.
Nat Commun ; 13(1): 5603, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153317

RESUMO

An effective malaria vaccine remains a global health priority and vaccine immunogens which prevent transmission of the parasite will have important roles in multi-component vaccines. One of the most promising candidates for inclusion in a transmission-blocking malaria vaccine is the gamete surface protein Pfs48/45, which is essential for development of the parasite in the mosquito midgut. Indeed, antibodies which bind Pfs48/45 can prevent transmission if ingested with the parasite as part of the mosquito bloodmeal. Here we present the structure of full-length Pfs48/45, showing its three domains to form a dynamic, planar, triangular arrangement. We reveal where transmission-blocking and non-blocking antibodies bind on Pfs48/45. Finally, we demonstrate that antibodies which bind across this molecule can be transmission-blocking. These studies will guide the development of future Pfs48/45-based vaccine immunogens.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Bloqueadores , Anticorpos Antiprotozoários , Malária Falciparum/parasitologia , Proteínas de Membrana , Plasmodium falciparum , Proteínas de Protozoários/química
7.
Nat Commun ; 13(1): 5085, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038546

RESUMO

African trypanosomes are extracellular pathogens of mammals and are exposed to the adaptive and innate immune systems. Trypanosomes evade the adaptive immune response through antigenic variation, but little is known about how they interact with components of the innate immune response, including complement. Here we demonstrate that an invariant surface glycoprotein, ISG65, is a receptor for complement component 3 (C3). We show how ISG65 binds to the thioester domain of C3b. We also show that C3 contributes to control of trypanosomes during early infection in a mouse model and provide evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance. Deposition of C3b on pathogen surfaces, such as trypanosomes, is a central point in activation of the complement system. In ISG65, trypanosomes have evolved a C3 receptor which diminishes the downstream effects of C3 deposition on the control of infection.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei , Trypanosoma , Animais , Complemento C3 , Antígeno de Macrófago 1 , Mamíferos/metabolismo , Camundongos , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo
8.
Methods Mol Biol ; 2470: 467-482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881367

RESUMO

A detailed understanding of the interaction between the highly variant Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) and their human binding partners is essential to explain their roles in disease development in malaria, as well as to understand how antibodies can inhibit these interactions and how the parasite manages to evade such an immune response. This chapter focuses on using surface plasmon resonance (SPR) as a reproducible, high-throughput method to quantitatively characterize these interactions. We describe how to utilize protein A or A/G and streptavidin for protein immobilization on SPR sensor chips and provide instructions on how to biotinylate proteins for this purpose and how to use SPR for binding competition assays. Since these experiments rely on recombinant proteins, we also present a method to verify their structural integrity using circular dichroism spectroscopy.


Assuntos
Malária Falciparum , Plasmodium falciparum , Anticorpos Antiprotozoários , Proteínas de Transporte/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
9.
Front Cell Infect Microbiol ; 12: 877253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782145

RESUMO

Plasmodium multigene families are thought to play important roles in the pathogenesis of malaria. Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium species. However, their expression pattern and localisation remain to be elucidated. Understanding protein subcellular localisation is fundamental to reveal the functional importance and cell-cell interactions of the PIR proteins. Here, we use the rodent malaria parasite, Plasmodium chabaudi chabaudi, as a model to investigate the localisation pattern of this gene family. We found that most PIR proteins are co-expressed in clusters during acute and chronic infection; members of the S7 clade are predominantly expressed during the acute-phase, whereas members of the L1 clade dominate the chronic-phase of infection. Using peptide antisera specific for S7 or L1 PIRS, we show that these PIRs have different localisations within the infected red blood cells. S7 PIRs are exported into the infected red blood cell cytoplasm where they are co-localised with parasite-induced host cell modifications termed Maurer's clefts, whereas L1 PIRs are localised on or close to the parasitophorous vacuolar membrane. This localisation pattern changes following mosquito transmission and during progression from acute- to chronic-phase of infection. The presence of PIRs in Maurer's clefts, as seen for Plasmodium falciparum RIFIN and STEVOR proteins, might suggest trafficking of the PIRs on the surface of the infected erythrocytes. However, neither S7 nor L1 PIR proteins detected by the peptide antisera are localised on the surface of infected red blood cells, suggesting that they are unlikely to be targets of surface variant-specific antibodies or to be directly involved in adhesion of infected red blood cells to host cells, as described for Plasmodium falciparum VAR proteins. The differences in subcellular localisation of the two major clades of Plasmodium chabaudi PIRs across the blood cycle, and the apparent lack of expression on the red cell surface strongly suggest that the function(s) of this gene family may differ from those of other multigene families of Plasmodium, such as the var genes of Plasmodium falciparum.


Assuntos
Malária , Plasmodium , Animais , Eritrócitos , Soros Imunes/metabolismo , Plasmodium falciparum/genética
10.
Nat Commun ; 13(1): 933, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177602

RESUMO

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/isolamento & purificação , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/metabolismo , Linhagem Celular , Drosophila melanogaster , Epitopos/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Desenvolvimento de Vacinas
11.
Trends Parasitol ; 37(9): 772-774, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315657

RESUMO

African trypanosomes cause diseases of humans and their livestock. To date, a much-desired vaccine has been elusive, due in part to the immune evasion mechanisms of these cunning parasites. However, Autheman et al. have used a bold, high-throughput screen to provide hope that vaccines may be on the way.


Assuntos
Vacinas Protozoárias , Tripanossomíase Africana , Animais , Interações Hospedeiro-Parasita/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Trypanosoma/imunologia , Tripanossomíase Africana/prevenção & controle
12.
J Mol Biol ; 433(20): 167093, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116123

RESUMO

The announcement of the outstanding performance of AlphaFold 2 in the CASP 14 protein structure prediction competition came at the end of a long year defined by the COVID-19 pandemic. With an infectious organism dominating the world stage, the developers of Alphafold 2 were keen to play their part, accurately predicting novel structures of two proteins from SARS-CoV-2. In their blog post of December 2020, they highlighted this contribution, writing "we've also seen signs that protein structure prediction could be useful in future pandemic response efforts". So, what role does structural biology play in guiding vaccine immunogen design and what might be the contribution of AlphaFold 2?


Assuntos
Pandemias/prevenção & controle , Software , Vacinas/química , Anticorpos Neutralizantes/imunologia , Desenho de Fármacos , Epitopos/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Conformação Proteica
13.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528504

RESUMO

In this issue, Adams et al. (2021. J. Exp. Med. https://doi.org/10.1084/jem.20201266) show that red blood cells infected with strains of Plasmodium falciparum, which are commonly found in cerebral malaria patients, are specifically internalized by brain endothelial cells, perhaps contributing to the symptoms of the disease.


Assuntos
Malária , Parasitos , Animais , Encéfalo , Células Endoteliais , Eritrócitos , Humanos , Plasmodium falciparum
14.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408232

RESUMO

Structure-guided vaccine design provides a route to elicit a focused immune response against the most functionally important regions of a pathogen surface. This can be achieved by identifying epitopes for neutralizing antibodies through structural methods and recapitulating these epitopes by grafting their core structural features onto smaller scaffolds. In this study, we conducted a modified version of this protocol. We focused on the PfEMP1 protein family found on the surfaces of erythrocytes infected with Plasmodium falciparum A subset of PfEMP1 proteins bind to endothelial protein C receptor (EPCR), and their expression correlates with development of the symptoms of severe malaria. Structural studies revealed that PfEMP1 molecules present a helix-kinked-helix motif that forms the core of the EPCR-binding site. Using Rosetta-based design, we successfully grafted this motif onto a three-helical bundle scaffold. We show that this synthetic binder interacts with EPCR with nanomolar affinity and adopts the expected structure. We also assessed its ability to bind to antibodies found in immunized animals and in humans from malaria-endemic regions. Finally, we tested the capacity of the synthetic binder to effectively elicit antibodies that prevent EPCR binding and analyzed the degree of cross-reactivity of these antibodies across a diverse repertoire of EPCR-binding PfEMP1 proteins. Despite our synthetic binder adopting the correct structure, we find that it is not as effective as the CIDRα domain on which it is based for inducing adhesion-inhibitory antibodies. This cautions against the rational design of focused immunogens that contain the core features of a ligand-binding site of a protein family, rather than those of a neutralizing antibody epitope.IMPORTANCE Vaccines train our immune systems to generate antibodies which recognize pathogens. Some of these antibodies are highly protective, preventing infection, while others are ineffective. Structure-guided rational approaches allow design of synthetic molecules which contain only the regions of a pathogen required to induce production of protective antibodies. On the surfaces of red blood cells infected by the malaria parasite Plasmodium falciparum are parasite molecules called PfEMP1 proteins. PfEMP1 proteins, which bind to human receptor EPCR, are linked to development of severe malaria. We have designed a synthetic protein on which we grafted the EPCR-binding surface of a PfEMP1 protein. We use this molecule to show which fraction of protective antibodies recognize the EPCR-binding surface and test its effectiveness as a vaccine immunogen.


Assuntos
Anticorpos Antiprotozoários/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Proteínas/síntese química , Proteínas/metabolismo , Proteínas de Protozoários/agonistas , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Sítios de Ligação , Adesão Celular , Receptor de Proteína C Endotelial/imunologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Ligação Proteica , Proteínas/química , Proteínas/imunologia , Ratos
15.
Proc Natl Acad Sci U S A ; 117(50): 32098-32104, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257570

RESUMO

The deadly symptoms of malaria occur as Plasmodium parasites replicate within blood cells. Members of several variant surface protein families are expressed on infected blood cell surfaces. Of these, the largest and most ubiquitous are the Plasmodium-interspersed repeat (PIR) proteins, with more than 1,000 variants in some genomes. Their functions are mysterious, but differential pir gene expression associates with acute or chronic infection in a mouse malaria model. The membership of the PIR superfamily, and whether the family includes Plasmodium falciparum variant surface proteins, such as RIFINs and STEVORs, is controversial. Here we reveal the structure of the extracellular domain of a PIR from Plasmodium chabaudi We use structure-guided sequence analysis and molecular modeling to show that this fold is found across PIR proteins from mouse- and human-infective malaria parasites. Moreover, we show that RIFINs and STEVORs are not PIRs. This study provides a structure-guided definition of the PIRs and a molecular framework to understand their evolution.


Assuntos
Plasmodium chabaudi/ultraestrutura , Domínios Proteicos/imunologia , Proteínas de Protozoários/ultraestrutura , Sequências Repetitivas de Aminoácidos/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/ultraestrutura , Dicroísmo Circular , Genoma de Protozoário/genética , Humanos , Malária/imunologia , Malária/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/ultraestrutura , Família Multigênica/genética , Família Multigênica/imunologia , Filogenia , Plasmodium chabaudi/genética , Plasmodium chabaudi/imunologia , Domínios Proteicos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sequências Repetitivas de Aminoácidos/genética
16.
Immunity ; 53(4): 697-699, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053324

RESUMO

In this issue of Immunity, Wang et al. report isolation of a human antibody derived from volunteers immunized during a malaria vaccine trial. This antibody binds a novel epitope and proves potent at preventing mosquito transmission of the malaria parasite.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária , Animais , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Humanos , Fígado , Malária/prevenção & controle , Esporozoítos
17.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900802

RESUMO

Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5.IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it-and the other parasite proteins it interacts with-promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.


Assuntos
Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Plasmodium falciparum/metabolismo , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Cisteína/análise , Eritrócitos/parasitologia , Feminino , Malária/parasitologia , Camundongos , Plasmodium falciparum/química , Plasmodium falciparum/genética , Ligação Proteica , Proteínas de Protozoários/imunologia
18.
Nature ; 587(7833): 309-312, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650338

RESUMO

The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur when these parasites replicate in human blood. Despite the risk of immune detection, the parasite delivers proteins that bind to host receptors on the cell surfaces of infected erythrocytes. In the causative parasite of the most deadly form of malaria in humans, Plasmodium falciparum, RIFINs form the largest family of surface proteins displayed by erythrocytes1. Some RIFINs can bind to inhibitory immune receptors, and these RIFINs act as targets for unusual antibodies that contain a LAIR1 ectodomain2-4 or as ligands for LILRB15. RIFINs stimulate the activation of and signalling by LILRB15, which could potentially lead to the dampening of human immune responses. Here, to understand how RIFINs activate LILRB1-mediated signalling, we determine the structure of a RIFIN bound to LILRB1. We show that this RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single mutation in the RIFIN disrupts the complex, blocks LILRB1 binding of all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics the activation of natural killer (NK) cells by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the immunological synapse of NK cells and reduce the activation of NK cells, as measured by the mobilization of perforin. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress the function of NK cells.


Assuntos
Receptor B1 de Leucócitos Semelhante a Imunoglobulina/química , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Ligantes , Bicamadas Lipídicas , Ativação Linfocitária , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mimetismo Molecular/imunologia , Mutação , Perforina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
19.
Mol Cell ; 79(3): 406-415.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692975

RESUMO

Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics.


Assuntos
Macrolídeos/farmacologia , Microssomos/química , Ribossomos/química , Canais de Translocação SEC/química , Animais , Sítios de Ligação , Sistema Livre de Células/metabolismo , Cães , Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Macrolídeos/química , Macrolídeos/isolamento & purificação , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Mycobacterium ulcerans/química , Mycobacterium ulcerans/patogenicidade , Pâncreas/química , Pâncreas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ribossomos/metabolismo , Canais de Translocação SEC/antagonistas & inibidores , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
20.
Elife ; 92020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420871

RESUMO

The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.


Assuntos
Alternaria/imunologia , Antígenos de Helmintos/metabolismo , Asma/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1/antagonistas & inibidores , Interleucina-33/antagonistas & inibidores , Nematospiroides dubius/metabolismo , Animais , Linhagem Celular , Humanos , Fatores Imunológicos/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nematospiroides dubius/imunologia , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...